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Abstract. We compute the finite-size spectrum for the spin-1
2 XXZ chain with twisted

boundary conditions, for anisotropy in the regime 0< γ < π/2, and arbitrary twistθ . The
string hypothesis is employed for treating complex excitations. The Bethe ansatz equtions are
solved within a coupled nonlinear integral equation approach, with one equation for each type of
string. The root-of-unity quantum group invariant periodic chain reduces to theXXZ1/2 chain
with a set of twist boundary conditions (π/γ ∈ Z, θ an integer multiple ofγ ). For this model,
the restricted Hilbert space corresponds to a unitary conformal field theory, and we recover all
primary states in the Kǎc table in terms of states with specific twist and strings.

1. Introduction

Apart from their relevance to real lattice systems with restricted dimensionality, spin chains
are interesting from a field theoretical point of view as integrable lattice regularizations of
(1+ 1)-dimensional field theories [1].

The continuum limit of the field theory is the thermodynamic limit of the spin chain,
where the number of spins in the chain goes to infinity. If the thermodynamic limit is
accompanied by taking the lattice spacing to zero, keeping the length of the chain constant,
we get a description of the continuum field theory in finite volume. At criticality, one expects
conformal invariance, with the conformal weights read out via the finite-size corrections of
the energy and the momentum [2–4].

In the class of theories with trigonometricR-matrices, massive theories (sine–
Gordon/massive Thirring models) are usually associated with spin-1

2 anisotropic Heisenberg
chains (XXZ1/2 chains) with inhomogenieties [5], whereas massless theories are related to
homogeneous chains. The conformal properties of the latter are well known, the central
chargec = 1, and conformal weights are ones of the Gaussian model [6–8].

Central chargesc < 1 can be reached by considering chains with some special fixed,
or twisted boundary conditions, related to critical Potts and Ashkin–Teller chains [6, 9–11].
The correct interpretation of this lowering ofc in the case of open chains was found by
Pasquier and Saleur [12]. The key feature is the invariance of the spin chain dynamics under
the universal quantum enveloping algebraUq(sl2). (The quantum deformation parameter is
given by the spin chain anisotropy asq = eiγ ). For open chains, the boundary conditions
can be chosen to ensureUq(sl2) invariance. This, however, is not sufficient to alter the
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central charge, which is a bulk effect. The lowering ofc comes about for a root-of-unityq
(rationalγ /π ), when the quantum group invariance allows for a self-consistent truncation
of the Hilbert space. By restricting the Hilbert space to type-II (also known as ‘good’)
representations of the quantum group, the central charge is lowered fromc = 1 to those
of minimal models [12]. Furthermore, analysing low lying excited states shows that the
conformal weights of primary operators form a one-parameter subset of the Kač table.

For closed chains, quantum group invariance is a more delicate matter [13, 14]. A
topological interaction of the Wess–Zumino–Witten type has to be introduced [13], which
leads to non-local terms in the Hamiltonian. On the level of Bethe ansatz equations, the
quantum group invariant closed chain can be viewed as a collection ofXXZ1/2 chains with
a set of twisted boundary conditions commensurate with the anisotropy. Again, quantum
group reduction leads to a lowering of the central charge toc < 1 [14, 15]. The collection
of twist boundary conditions is the exact analogue to theθ -vacua of SOS and sine–Gordon
models, in which the quantum group restriction leads to RSOS or RSG models, respectively.
The quantum group invariant chain can be considered as the critical/ultraviolet limits of these
models (see, e.g., [16]).

The main motivation for this work is the interpretation, found in [17], of the conformal
properties of twistedXXZ1/2 chains, in terms of a lagrangean conformally invariant field
theory withc < 1, namely the Liouville model with imaginary coupling. If the imaginary
Liouville model on a circle is discretized preserving the integrable structure, it is equivalent
to the quantum group invariant periodicXXZ1/2 chain on the level of Bethe ansatz; the
Liouville model can be mapped to a set ofXXZ1/2 chains with twisted boundary conditions.
For root of unity couplings, a quantum group reduction can be performed on the Hilbert
space. The central charges of minimal models are reproduced, confirming the dependence
of central charge on Liouville coupling, known from canonical quantization.

Furthermore, based on Karowski’s treatment of Potts models [18], primary states
furnishing the full Kǎc tables of unitary minimal models were conjectured to arise from
a specific set of Bethe ansatz states. More exactly, primary states should arise from BA
states with one string excitation above the sea of real BA rapidities, and no extra holes, i.e.
vanishing total spinS of the chain.

This leads us to reconsider the finite-size analysis ofXXZ1/2 chains with twisted
boundary conditions. In the extensive literature on the subject [19, 7–10, 18, 20–25, 15],
the main stress has been on investigations of pure hole excitations. Very little has been
done to analyse complex excitations. String excitations with a restricted set of couplings
and twists were investigated in [18], and complex pair excitations were considered in [22].
Apart from these, most work on complex excitations has been numerical [9, 24, 25].

We shall use a nonlinear integral equation (NLIE) method [26, 27] to analyse the finite-
size spectrum. This method is more powerful than the Euler–MacLaurin methods mostly
used in the literature, and it allows for extracting the scaling behaviour from the Bethe
ansatz equations in a rather straight forward manner. We follow the Destri–de Vega (DdV)
approach [27], extending it to complex excitations with a twist. In [28], the DdV equations
for the sine–Gordon model were generalized to complex excitations described as wide and
close pairs. Here, we make the crucial departure from the methods of [28] in that the string
picture of the excitations is used. This is because, as pointed out above, the primary states
are most transparently described in this language.

The plan of the paper is as follows. In section 2 we formulate the albegraic Bethe ansatz
for theXXZ1/2 chain with twisted boundary conditions. This we do for generic anisotropy
in the antiferromagnetic regime 0< γ < π/2 and generic twist angleθ . We describe the
complex excitations as strings. The DdV equations are derived for the case where we have
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positive parity strings of one specified lengthk in addition to a bulk of real Bethe ansatz
roots. To facilitate the analysis, we restrict the range of string lengths to obeykγ < π . In
section 3 we compute the finite-size corrections to the energies and momenta of these states.
We specialize to states where no holes punctuate the distribution of real roots. In section 4
we specialize to the Hilbert space pertinent for lattice Liouville model, i.e. the restricted
quantum group invariant chain. We show how the quantum group reduction lowers the
central charge. Analysing excited states with only one longer string in the sectorSz = 0,
we show that these states are primary states of the theory, furnishing the whole Kač table.

The main point of this paper will be the fact that taking Bethe ansatz configurations
with one positive parity string, we are able to retrieve the spectrum of unitary minimal
conformal field theories using a NLIE method. The two integers in the ensuing Kač table
are the string lengthk and the twistκ. Aside from the technical advantage gained from this
way of doing things, the hope is that this method is easier to generalize to the less explored
case ofc > 25 of relevance to Liouville theory with real coupling.

2. Twisted Bethe ansatz equations for strings

We consider a spin-1
2 XXZ chain with 2N sites, with anisotropyγ , and boundary conditions

twisted by the angleθ :

σ±2N+1 = e±iθσ±1 σ z2N+1 = σ z1 . (1)

The hamiltonian reads

HXXZ = 1

2

2N∑
j=1

σ+j σ
−
j+1+ σ−j σ+j+1+ 2 cosγ σ zj σ

z
j+1 (2)

where the antiferromagneticXXX limit corresponds toγ = 0 and the free Fermion point
is at γ = π

2 .
We formulate the theory in the standard language of quantum inverse scattering [29].

TheL-matrix, satisfying the fundamental commutation relationRLL = LLR, is

Ln,a(λ) = 1

sinh iγ

(
sinh(λ+ iγ σ zn ) σ−n sinh iγ

σ+n sinh iγ sinh(λ− iγ σ zn )

)
. (3)

where the operatorsσ zn , σ
±
n are defined by the commutation relations of the quantum group

Uq(sl2). TheL-matrix is normalized so that forλ = iγ /2 it degenerates to a permutation
operator between the auxiliary and quantum spaces. Using thisL-matrix, we can write
the transfer matrix of the chain, and build the eigenstates of the transfer matrix using the
algebraic Bethe ansatz.

We will focus our attention on those eigenstates of the transfer matrix that can be
described in terms of real rootsλj , j = 1, . . . , n1, as well as strings of complex roots
λ
(l)
j , j = 1, . . . , nl . A (positive parity)l-string λ(l) is the collection ofl roots of the form
λ+ inγ, n = −(l−1)/2, . . . , (l−1)/2, with λ real. Accordingly, in compact notation real
roots are frequently designated as one-strings.

We shall only consider positive parity strings. Negative parity strings can be treated
within the same context but they are irrelevant for our purposes since they do not lead to
primary conformal states in the thermodynamic limit.

The number ofl-strings isnl , and the total number of roots is
∑

l l nl = N − S, where
S is the number of Bethe roots lacking from the maximal number of rootsN , i.e. thez-
component of the total spin of the chain. In order to simplify the underlying analysis, we
consider only the antiferromagnetic regimeγ < π/2, which covers all unitary theories. We
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also adopt a technical restriction on the range of the string length, so thatkγ < π . This
restriction, although not required in the most general case of anisotropy, shows up rather
naturally when we consider the roots of unity case of theXXZ model pertaining to unitary
conformal field theories, as a consequence of the underlying quantum group structure.

The Bethe ansatz equations solved by the rapiditiesλ
(k)
i describing a Bethe state are

e−2ikθ

[
sinh

(
λ
(k)
i + ikγ /2

)
sinh

(
λ
(k)
i − ikγ /2

)]2N

= −
∏
l, nl 6=0

nl∏
j=1

Skl(λ
(k)
i − λ(l)j ) ∀ (k, i) (4)

where the string–string scattering matrix is

Skl(λ) =
(k+l)/2−1∏
m=|k−l|/2

sinh
(
λ+ imγ

)
sinh

(
λ− imγ

) sinh
(
λ+ i(m+ 1)γ

)
sinh

(
λ− i(m+ 1)γ

) . (5)

To solve these equations, it is beneficial to write them in a logarithmic form. For this,
we define the phase function

φm(λ) = i log
sinh

(
imγ + λ)

sinh
(
imγ − λ) m > 0

φ0(λ) = 0.

(6)

For a real argumentλ, the phase functionφm is a continuous monotonic function. We
choose the branch of the logarithm so that it is antisymmetric with respect to the origin.
Using the phase function, we further define the momentum function

pl(λ) = φl/2(λ) (7)

the string–string scattering phase

8kl(λ) =
(k+l)/2−1∑
m=|k−l|/2

[
φm(λ)+ φm+1(λ)

]
(8)

and the counting functions forl-strings

zl(λ) = 2Npl(λ)−
∑
k,j

8lk(λ− λ(k)j )+ 2lθ. (9)

By defining counting functions for strings, all the analysis is reduced to dealing with
functions of real variables, a considerable simplification over the usual method of treating
complex NLIEs. In this respect, the string hypothesis is necessary, (although probably
not inescapable), and marks a departure from the standard Destri–de Vega treatement. Of
course, we must keep in mind that this is only justified when we are at zero temperature.

In terms of the counting functions, the Bethe equations (4) become

zl(λ
(l)
i ) = 2πI (l)i (10)

where the quantum numbersI (l)i encode the choice of branch of the logarithm. They are
integers or half integers whennl is even or odd, respectively. These quantum numbers
should all be distinct for a specified string length, otherwise the Bethe ansatz equations
are easily seen to lead to a infinite repulsion of the quasiparticles corresponding to equal
quantum numbers. This is what is usually referred to as the fermionic character of Bethe
states.

The basic assumption one makes in treating the Bethe equations for real rapiditiesλ

is that the monotonicity of 2Np1 is sufficent to make the counting functionz1 overall
monotonic. This allows one to find the spectrum of the quantum numbersI

(1)
i . Indeed,
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assuming monotonicity,z1/2π takes all the (half) integer values betweenz1(−∞)/2π and
z1(∞)/2π exactly once. The only freedom we are left with in determining the spectrum
of the I ’s lies in the choice of the overall branch of the counting functionz1, which is
irrelevant. Any possible non-monotonicity would induce additional holes close to the ends
of the rapidity distributions [28]. These do not effect the quantities calculated here. As
opposed toz1, the higher string counting functionszk are generically non-monotonous.

For a configuration characterized by the higher string occupation numbersnk, the
asymptotic values of the counting functions are

zl(±∞) = ±πnl ± 2S(π − lγ )± 2π
∑
k>l

(k − l)nk + 2lθ. (11)

If nk 6= 0 for somek, it is clear that there are more vacancies betweenz1(−∞) andz1(∞)
than those occupied by the Bethe ansatz roots. These unoccupied vacancies are called holes,
and they correspond to zeros of the eigenvalue of the transfer matrix (as opposed to Bethe
ansatz roots, which correspond to poles with vanishing residue). The number of holes in
the distribution of real roots is

h = 2
∑
k>1

(k − 1)nk + 2S +
⌊

1

2
− θ

π
− S γ

π

⌋
−
⌊

1

2
− θ

π
+ S γ

π

⌋
. (12)

Here b◦c denotes the integer part of◦. The integer part terms vanish for small values of
the total spinS. The salient feature of relation (12) is that ak-string gives rise to 2(k − 1)
holes.

The antiferromagnetic ground state is given by the configuration where there are no
complex roots, and the number of real roots is maximal, i.e.n1 = N; nk = 0, k > 1; S = 0.
From equation (12), it is easily seen that there are no holes; in the ground state all vacancies
are filled.

In the thermodynamical limit, low-lying exitations above the ground state are
characterized by configurations where some higher strings are exited, as well as possibly
some extra holes (S might differ from zero), but the only macroscopic occupation number
is the one of real roots, i.e. onlyn1 ∼ N .

Now we make use of the Destri–de Vega method [27] to derive an integral equation
equivalent to the Bethe equations. The derivative of the function

A(λ) = log{1+ (−1)n1eiZ1(λ)} (13)

acts as a density of real roots and holes in contour integrals; it has first order poles at all
allowed 2π × (half) integer values ofz1(λ), with residue one. Accordingly, for a functionf
which is analytic within the contour,∮

0

f (λ) A′ =
∑
j :roots

f (λj )+
∑
m:holes

f (µm). (14)

The integration path0 surrounds the roots and holes counterclockwise. Stretching0 to
±∞ ± iε, one gets the coupled equations for the counting functions of real roots and
k-strings

z1(λ) = 2Nσ(λ)+ 2Im
(
G11 ∗ε A

)
(λ)+

h∑
m=1

F11(λ− µm)−
nk∑
j=1

F1k(λ− ζj )+ C1 (15)

zk(λ) = 2Im
(
G1k ∗ε A

)
(λ)+

h∑
m=1

F1k(λ− µm)−
nk∑
j=1

Fkk(λ− ζj )+ Ck. (16)



9988 T Nassar and O Tirkkonen

These equations generalize the results of [27] to encompass strings and holes†. We have
denoted the rapidities of the holes withµm, m = 1, . . . , h, and the rapidities of thek-strings
with ζj , j = 1, . . . , nk. The symbol∗ε denotes a convolution along a infinitesimally shifted
real line,

(G ∗ε A)(λ) ≡
∫

dµ

2π
G(λ− µ− iε)A(µ+ iε). (17)

The inhomogeneity functionσ arising from the action of an inverse convolution on the
momentum function is

σ(λ) = (11+8′11)
−1 ∗ p1 = arctan

(
sinhπ

γ
λ
)
. (18)

Similarly, the functionsF , giving the hole and string contributions, are defined as

F1l = (11+8′11)
−1 ∗81l . (19)

The measures of the convolutions have 2π denumerators, as in (17), and11(λ) ≡ 2πδ(λ).
The kernelsG of the integral equations are given by differentiation,G1l(λ) = dF1l(λ)/dλ,
and the effect of thek-string on itself is encoded by the functionFkk = 8kk −G1k ∗81k.

It is remarkable that thezk equation does not have any inhomogeneity arising from the
momentum functions. This follows from the identitypk = G1k ∗ p1, which can be proved
by Fourier transforming.

Finally, the constant terms in the equations are

C1 = π θ

π − γ −
π(π − 2γ )

2(π − γ )
(⌊

1

2
− θ

π
+ S γ

π

⌋
+
⌊

1

2
− θ

π
− S γ

π

⌋)
(20)

Ck = (2k − 2)π θ

π − γ − π(π − kγ )
π − γ

(⌊
1

2
− θ

π
+ S γ

π

⌋
+
⌊

1

2
− θ

π
− S γ

π

⌋)
. (21)

These have the contributions of of the twist angleθ , renormalized by the integration over
the inverse convolution(11+8′11)

−1. The integer part terms arise from boundary terms in
partial integrations.

To compute the finite-size corrections, one takesN large but not infinite. From the
functional form of the source term, 2Nσ , one can see that the Fermi points, i.e. the limits
of the distribution of real rapidities, are close toλ = ± logN . To treat the excitations close
to the Fermi points, one defines the so-called kink counting functions

z±1 (λ) = lim
N→∞

(
z1(λ± γ

π
log 4N)∓Nπ) (22)

z±k (λ) = lim
N→∞

zk(λ± γ

π
log 4N). (23)

The configurations of holes and strings that can be treated exactly in this limit are such
that all holes and strings are either close to one of the Fermi points, or well away from
both. Here, we shall assume that every hole and string is in the vicinity of one of the Fermi
points.

We parametrize the hole rapidities as

µm = µ±m ± γ

π
log 4N m = 1, . . . , h±. (24)

The number of holes in the vicinity of the left (right) Fermi point ish+ (h−). The total
number of holes ish = h+ + h−. Similarly, thek-string rapidities areζj = ζ±j ± γ

π
log 4N ,

and n±k are the numbers of strings close to each Fermi point. At one Fermi point, the

† The generalization to pure hole excitations was performed in [16].
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contributions of the holes and strings situated close to the opposite Fermi point are just
given byF(±∞).

The only non-trivial scaling behaviour comes from the functionσ . Indeed, subtracting
the bulk contribution, for values ofλ close to the Fermi points one has

lim
N→∞

(
2Nσ(λ± γ

π
log 4N)∓Nπ) = ∓e∓πλ/γ . (25)

We get the following coupled nonlinear integral equation for the kink counting functions:

z±l (λ) = �l(λ)+ 2Im (G1l ∗ε A±) (λ) l = 1, k (26)

where we have used the scaled density integralA± = log
(
1 + (−1)n1eiz±

)
, and the

inhomogeneity functions

�l(λ) = ∓δ1,le
−πλ/γ +

h±∑
m=1

F1l(λ− µ±m)−
n±k∑
j=1

Flk(λ− ζ±j )+ C±l . (27)

The constant terms carry the renormalized twistθ , as well as the information from the
opposite Fermi point:

C±l = Cl + h∓F1l(±∞)− n∓k Flk(±∞). (28)

To extract the energy and momentum eigenvalues from the scaled NLIEs (26), one
needs to know the asymptotic behaviour of the scaled functions. At±∞ we have

z±1 (±∞) = ±πnk(k − 2)± πS ∓ 2Sγ + 2θ. (29)

At ∓∞, the kink equation (26) implies

z±1 (∓∞) = ∓z±1 ′(∓∞) = ∓∞. (30)

Due to the infinitesimalε in ImA(λ+iε) ≡ Im εA, the value of this expression is always
between−π/2 andπ/2. In the limit ε → 0, it is a sawtooth function, with a step-function
jump of −π at each root or hole position. A small finiteε makes the function analytic.
The asymptotic values of the imaginary parts of the scaled density integrals are thus

Im εA±(±∞) = Im εA(±∞) = θ ∓ Sγ + π
⌊

1

2
− θ

π
± S γ

π

⌋
≡ θ± ∓ Sγ. (31)

It should be noted that close to±∞ the imaginary part operation can glide through the
G1l to act only onA, up to a correction that vanishes likeε logε. That is, the integrals in
the convolutions of equation (26) are taken along the real axis, so that the kernelsG1l are
convoluted with the regularized sawtooth function ImεA.

In the opposite asymptotic regime, deep in the bulk of filled real rapidity states, the
small but finiteε lets z±1

′(∓∞) dominate in the expansion ofA±(∓∞+ iε), and

Im εA±(∓∞) = 0. (32)

3. The finite-size spectrum

At the external rapidityλ close to iγ /2, the dominating contribution to the eigenvalue of
the transfer matrix is given by

3(λ; {λ(k)i }) = e−iθ

[
sinh(λ+ iγ /2)

sinh iγ

]2N ∏
l, nl 6=0

nl∏
j=1

sinh(λ(l)j − λ+ i(l + 1)γ /2)

sinh(λ(l)j − λ− i(l − 1)γ /2)
. (33)
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We expect local integrals of motion at the pointλ = iγ /2, where theL-matrix
(3) degenerates to a permutation operator. The corresponding momentum and energy
eigenvalues of a Bethe state are

P({λ(l)j }) = i log3(iγ /2; {λ(l)j }) =
(
π
∑

nl + θ +
∑
l,j

pl(λ
(l)
j )

)
mod 2 (34)

E({λ(l)j }) = i
γ

π

d

dλ
log3(λ; {λ(l)j })

∣∣∣∣
λ=iγ /2

= 2N
γ

π
cotγ − γ

π

∑
l,j

p′l(λ
(l)
j ). (35)

Using the logarithmic Bethe equations (10), we express the momentum in terms of the
quantum numbersI :

P({λ(l)j }) =
(
π
∑

nl + π

N

∑
l,j

I
(l)
j

)
mod 2. (36)

To compute the energy eigenvalues, we once more employ the contour integral method
(14) for the sum over rapidities of real rootsλ(1)j . Doing this, we get

E({µm}; {ζj }) = 2N
γ

π

(
cotγ −

∫ ∞
−∞

dλ

2π
p′1(λ)σ

′(λ)
)
+ γ
π

Im ε

∫ ∞
−∞

dλ

π
σ ′(λ)A′(λ)

+γ
π

∑
m

σ ′(µm). (37)

The dependence of the string rapiditiesζj is only indirect, coming through the Bethe
equations in the NLIE form, when evaluating the last two terms.

The 1/N corrections to the energy come from the parts of the second integral in (37)
that are close to the Fermi pointsλ = ± γ

π
log 4N , as well as from the third term. From

equation (18) we haveσ ′(λ) = π
γ
(2 coshπ

γ
λ)−1, which is exponentially peaked around

the origin. From the asymptotic analysis of ImεA, we however know that for largeN ,
Im εA

′ vanishes as a double exponential when one goes in to the bulk from the Fermi
points± γ

π
log 4N . Thus the main contributions to the second integral in (37) for largeN

come from the vicinity of these points. In this regime,σ ′ takes an exponential form,
σ ′(µ± γ

π
log 4N) ≈ π

γ
(1/4N)e∓πµ/γ . Also, the hole rapidities in the last term of (37) are

taken to be close to one of the Fermi points, as in equation (24).
After these considerations, the finite-size corrections to the energy are given by

EFSC= 1

N
(E+ + E−) (38)

where the contributions of the right and left ends of the rapidity spectrum are

E± = Im ε

∫
dµ

π
e∓πµ/γA′± +

h±∑
m=1

e∓πµ
±
m/γ . (39)

Using the scaled NLIEs (26), these can further be reduced to

E± = ∓
h±∑
m=1

z±1 (µ
±
m)±

n±k∑
j=1

z±k (ζ
±
j )± h±C±1 ∓ n±k C±k ± Im ε

∫
dµ

π
�±1
′(µ)A±(µ) (40)

where the�’s are defined in equation (27).
The terms in (40) involving the constantsC1 andCk of equation (28) can be evaluated

using the asymptotic calues of theF -functions: F11(±∞) = ±π ∓ 1
2 π

2/(π − γ ) and
F1k(±∞) = ±kπ ∓ (k − 1) π2/(π − γ ).
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-z1

z1(−∞)
c c c c c

h− holes︷ ︸︸ ︷︸ ︷︷ ︸
bulk of N−S−knk real roots

x x x x x x x x x x x x x x x x x c c c c c
h+ holes︷ ︸︸ ︷

z1(∞)

Figure 1. The distribution of real roots and holes in a state with onek-string.

The values of the counting functions at holes and roots are given by 2π times the
(half)integer quantum numbersI±. To evaluate the sums over the hole quantum numbers in
(40), we take a distribution where all real roots are in the bulk, so that no holes intermeddle
with the roots (figure 1). Thus the quantum numbersI+m for the positive rapidity holes
get theh+ largest (half)integer values ofz+1 (λ)/2π , and the quantum numbersI−m for the
negative holes get theh− smallest (half)integer values ofz−1 (λ)/2π :

I±m = ±
1

2
((k − 2)nk + S − 1)−

⌊
1

2
− θ

π
± S γ

π

⌋
∓ 1±m m = 1, . . . h±. (41)

The quantum numbersI k,± of the strings may take any (half)integer values allowed by the
asymptotics of the counting functions (11) up to non-monotonicities that are consistent with
the nonlinear integral equations (26).

Finally, the integral in the last term in (40) can be evaluated by the standard dilogarithm
trick; see, e.g., [27, 28]. For the densitiesA± and the inhomogenities�± satisfying
equations of the form (26), and the boundary conditions (31), (32) forA±, we have

Im ε

∫ ∞
−∞

dµ �±′(µ)A±(µ) = ±1

2

π

π − γ (θ± ∓ Sγ )2∓ π
2

12
. (42)

Combining the contributions of the various terms in (40), the finite-size energy of the
state described above can be evaluated as

EFSC= 1

2N

{
1

π − γ
[
θ + π1h− π(k − 1)1nk

]2

+ (π − γ )S2− π
6

+ 2π

(
k 1h1nk + Snk(k − 1)− n+k n−k (1+ 2k − 2k2)

+
n+k∑
j=1

I
(k)+
j −

n−k∑
j=1

I
(k)−
j

)}
(43)

where the antisymmetry of thek-string distribution is1nk = n+k −n−k , and the antisymmetry
of the hole distribution is

1h = 1

2

(
h+ − h− +

⌊
1

2
− θ

π
+ S γ

π

⌋
+
⌊

1

2
− θ

π
− S γ

π

⌋)
. (44)

With the distribution of real roots as described, it is an easy task to compute the
momentum (36). This turns out to be

P = π (N − S − knk + 1−1h) mod 2π + π

N

(
knk 1h+ S

(
θ

π
+ 1h

)
+

nk∑
j=1

I
(k)
j

)
.

(45)
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The twisted ground state is the state with no strings or holes. For zero external magnetic
field, it lies in the sectorS = 0, and has vanishing momentum. The ground-state energy is

E
(0,θ)
FSC =

1

2N

(
θ2

π − γ −
π

6

)
. (46)

The central charge isc = 1, as the well known formula of [2, 3] connecting the ground-
state energy with the central charge gets corrected in the presence of non-trivial boundary
conditions. The central charge is a bulk property, which cannot be changed by boundary
effects.

For the subsets of parameter space investigated earlier, the computed excited state
energies and momenta agree with results in the literature. For the pure hole states (no
complex excitations), they coincide with those in [21]. Regarding states with complex
excitations, the two-string result agrees with [22]. For generic strings, our results agree
with those of [18], for the discrete set of couplings (γ = π/ν, ν = 3, 4, . . .) and twists
(θ = γ ) treated there. When comparing with the literature, it should be noted that our
definition of the Hamiltonian by differentiation (35) rescales the Fermi-velocity to 1.

It is also interesting to compare our results with those obtained by the bosonisation
method. From [30], for example, one can find the excitation spectrum for the untwisted
chain. The result for a twisted chain follows from observing that the twist boundary
conditions on the chain modify the boundary conditions of the dual boson only. This
leads to an energy spectrum which is exactly of the form (43):

Ebosonisation= vs

2N

(
(m+ θ)2

2πR2
+ 2πR2S2+ 2π

∞∑
n=1

n(mLn +mRn )
)
. (47)

HereR = √(π − γ )/2π is the compactification radius of the boson,m is the quantized
momentum of the boson zero-mode, andmL,Rn are occupation numbers of thenth left-
and right-moving oscillator modes of the boson.S is the quantized dual boson zero-mode
momentum, which coincides with ourS. Comparing with (43), we see that Bethe ansatz
strings and holes are mixtures of bosonic zero and oscillatory modes.

4. The Kač table in Liouville theory

As explained in the introduction, imaginary coupling Liouville theory can be described by
a collection of twistedXXZ chains, ifγ /π = µ/(ν + 1) is rational [17]†. The twists are
quantized in terms ofγ :

θ = κ γ κ = 0, . . . , ν.

7This collection of twistedXXZ1/2 chains is exactly the one that describes the Bethe
ansatz of a root-of-unityUq(sl2) invariant periodic chain [13–15]. This equivalence is not
surprising, if one keeps the connection to sine–Gordon theory in mind. The twist-sectors in
the lattice Liouville model correspond exactly to theθ -vacua of its massive perturbation, the
sine–Gordon model. These vacua become non-degenerate in finite volume (see, e.g., [16]).
The sine–Gordon model has anUq(sl2) symmetry [31, 32], whereq is related to the coupling
constantβ2 ≡ 8(π − γ ).

On the other hand, the integrable lattice discretation of the sine–Gordon model is an
inhomogeneousXXZ1/2 chain with anisotropyγ . The massless limit, i.e. the imaginary

† More exactly, in [17] the Liouville equivalence was proved only forπ/γ = ν+1, ν = 2, 3, . . . . The equivalence
can be easily extended to more general rational values.
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coupling Liouville model, is then described by an homogeneousXXZ1/2 chain withUq(sl2)
symmetry, of the type described in [13–15].

The consistent quantum group restriction of the Hilbert space of these root-of-unity
Uq(sl2) invariant models comes about by restrictingκ to be non-vanishing. In sine–Gordon
theory this leads to the restricted sine–Gordon model, which flows to minimal models in
the ultraviolet [31, 32]. Here, we are investigating the Bethe ansatz description of this
ultraviolet limit, and we shall see that the primary operators creating string states furnish
the whole Kǎc table.

The ground state of the quantum group restricted model is in theκ = 1 sector,
reproducing

c = 1− 6γ 2/π(π − γ ). (48)

For rationalγ /π , this gives exactly the central charges of minimal models.
Here it should be noticed that in the quantum group invariant chain, the twist does

not arise from boundary conditions on the spatial boundaries of the chain. Rather,
different twists select different sectors in the Hilbert space transforming in a specific way
under the globalZ-symmetry of the theory. In a bosonized language this symmetry is
φ → φ + 2nπ, n ∈ Z. This is a symmetry of all theories with the potential a function
of eiφ , including the sine–Gordon and imaginary Liouville ones. Thus the situation for a
restricted quantum group invariant chain (i.e. aq-restricted Liouville chain) differs from the
XXZ1/2 chain with twisted spatial boundary conditions discussed in the previous section.
The equation of [2, 3], connecting the ground-state energy to the central charge, does not
acquire boundary corrections, and the central charge is as above.

Conformal primary and secondary operators create excited states from the vacuum.
Following Cardy [4], the critical indices of the operators creating excited states are given
by the finite-size energies and momenta.

We are interested in primary states with equal holomorphic and anti-holomorphic
confomal weights, i.e. with vanishing finite-size correction to the momentum (conformal
spin). Inspired by [18], we look for these among the excited states with one higher string
(nk = 1). From equation (45) we see that a sufficient condition for the vanishing of the
conformal spin isS = 0 and

k 1h+ I (k) = 0. (49)

The corresponding energies are

EFSC= 1

2N

{
1

π − γ
[
κγ − πI (k)±/k ∓ π(k − 1)

]2− π
6

}
(50)

where the sign refers to the position of the string close toλ = ±∞. The harmonic oscillator
pieces in the energies vanish for all of these states.

For generic values ofθ and γ < π/2, the k-string may be close to∞ or −∞,
depending on the values ofk, γ and θ . Not all string legths are allowed for allγ and
θ , nor all combinations of different hole and string positions. Apart from the Takahashi–
Suzuki conditions [33] that restrict allowed string lengths, one has to treat the Bethe ansatz
equation forzk to find the allowed values ofIk.

For our purposes, it suffices to analyse the asymptotics ofzk(ζ ) for the string position
ζ close to±∞, which gives the possible range of quantum numbersI (k). We get different
branches of primary states solving the condition (49).

The first branch, for whichI (k) = 0, exists when

k + κ < π

γ
. (51)
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For states with hole distributions symmetric up to the twist effects of equation (49), this
k-string is close to−∞.

Using the formulaEexited− E0 = π
N
(1 + 1̄) of [4], we get the conformal weights of

these primary states:

1 = 1̄ =
(
π(k − 1)− κγ )2− γ 2

4π(π − γ ) . (52)

For unitary minimal models (γ = π/(ν + 1)), these states consisting of onek-string with
I (k) = 0 and a symmetric distribution of 2k − 2 holes, furnish the whole Kač table. In
the q-restricted case, the remnantκ gets the valuesκ = 1, . . . , ν. The Takahashi–Suzuki
condition [33] on the string length allows all strings up tok = ν. For an unitary model,
condition (51) restricts this further tok < ν+1− κ. Thus the integersκ andk give exactly
the two integer labels of the full Kač table, with the apropriate ranges.

For non-unitary minimal models, these states yield only a part of the table. Some
primaries are left out due to the technical restriction adopted in this paper,kγ < π .

5. Conclusions

We have computed the finite-size corrections to the energies and momenta of excited states
in XXZ1/2 chains periodic up to a twist, for generic anisotropyγ < π/2 and twistθ . The
excited states were described as holes in the sea of real Bethe ansatz rapidities, as well as
complex rapidities collected in (positive parity) strings. We restricted outselves to the case
where there are strings of only one spcified lengthk in addition to the real rapidities.

To extract the scaling information, we used the Destri–de Vega approach to treat Bethe
ansatz equations, generalizing it to cope with string-like excited states.

Apart from completing the picture of excitation energies to be found from the literature,
to arbitrary coupling, twist and string length (up tok < π/γ ), our result (43), (45) is
interesting due to its special dependence of the ‘field theoretic’ quantum numbersh±. We
consider this to be the major novel feature of our finite-size solution.

One of the original motivations for developing the DdV formalism was the possibility of
deriving the thermodynamic Bethe ansatz (TBA) equations directly from the algebraic Bethe
ansatz [27]. The field theoretic TBA degrees of freedom correspond to holes and strings,
which are excitations above the vacuum of interacting magnons. The holes correspond to
right and left moving kinks, and the strings correspond in this case to weakly bound kinks,
with binding energy of order∼ 1/N .

As can be seen from equation (44), the twist dependence of the energy for a fixed
field-theoretical configuration is not innocent. Due to the integer part cuts, the energies
and momenta have discontinuities at some specific values of the twist. From the point of
view of the original magnon degrees of freedomλ(l)j of the Bethe ansatz equations (10),
however, an adiabatic excursion inθ is possible. Theλ(l)j are the building blocks of the
underlying interacting vacuum, and the energies and momenta are continuous if theλ

(l)
j

move continuously.
During such an adiabatic excursion, the number of left and/or right holes change when

θ moves over a value giving a jump in the integer part expressions of (44). Thus at these
values ofθ the vacuum absorbs a left kink state and emits a right one, or vice versa. It
should be stressed that this spectral flow is not just a trivial consequence of the choice of
branch in the counting functions. Rather, it encodes drastic changes in the structure of the
Hilbert space for different values ofθ . For example, the degeneracies of secondary states
built by driving some of the holes into the bulk change at the jump points.
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Adiabatic excursions of this type have been investigated in the context of aXXZ chain
threaded by a magnetic flux [23–25]. For this, the twist is given the physical interpretation
as a threading magnetic flux. For full comparison with the numeric excited state results
of [24, 25], negative parity strings have to be incorporated into our treatment, as these play
a central role for larger values ofγ .

Finally, we showed how in theq-restricted Hilbert space of theUq(sl2) invariant periodic
chain, which is equivalent to the imaginary coupling Liouville model and the UV-limit of
sine–Gordon, the central charge decreases fromc = 1 to those of minimal models. Excited
states with one higher string and a minimal amount of holes, give rise to all the primary
states in the case of unitary minimal models.

In conclusion, we want to comment that the string picture should not be necessary for
deriving the results of this paper. In [28], wide and close pairs were used to describe
complex excitations. This approach could certainly be generalized to twisted boundary
conditions in theXXZ chain. The strings, however, provide a good tool which singles out
very specific combinations of wide and close pairs that correspond to primary states in the
critical theory.
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